
Object-Oriented VRML For Multi-user Environments�

Sungwoo Park, Taisook Hany

Department of Computer Science, KAISTz

Abstract

We suggest a new 3D scene description language which is a derivative of VRML

(Virtual Reality Modeling Language). The language enhances the object-oriented

feature of VRML, especially with respect to programming the behavior of nodes.

The language no longer provides the Script node and the route. Instead, event

handlers enable a node to take general actions. The event handler is included in

the definition of node prototypes. The language has a feature that supports the

multi-user environment. One of the design criteria is its suitability for the easy

implementation of multi-user virtual environment systems. For this purpose, we

propose a new structure of messages distributed among clients in a multi-user

system.

CR Categories and Subject Descriptors: I.3.6 [Computer Graphics]: Method-

ology and Techniques - Languages; I.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism - Virtual Reality.

Additional Keywords: object orientation, multi-user environment, multicast

mechanism.

1 INTRODUCTION

The Virtual Reality Modeling Language, VRML [2, 3], is a file format for de-

scribing interactive three-dimensional scenes. It has developed from a simple 3D

scene description language to a more sophisticated 3D modeling language capa-

ble of expressing behavior and supporting interactions. VRML 2.0 provides many

extensions and enhancements to its predecessor, VRML 1.0, and has become the

standard 3D modeling language.

With its evolution to VRML 2.0, VRML has included some new object-

oriented graphic constructs. Object-oriented features of VRML 2.01 are such as

prototype extension mechanism, event passing among nodes, and behavior asso-

ciated with nodes. However, some of the language features violate the general

object-oriented design principle. For example, adding behavior to a node is ac-

complished by exploiting Script nodes and routes that are not a part of the node.

A Script node is an independent object in VRML which can be connected to other

nodes only through routes. Thus, the behavior of a node is controlled not by its

own elements but by other independent nodes, namely, Script nodes in conjunc-

tion with routes. If the positions of Script nodes and routes in a VRML file are

not chosen carefully, one may find difficulty in understanding the behavior of

a node to which Script nodes and routes are related. It is due to insufficiency

�This work is supported by the ETRI, Electronics and Telecommunications

Research Institute, under grant 96-09-960520. This work is supported in part by

Korea Science and Engineering Foundation (KOSEF) through Center for Arti-

ficial Intelligence Research (CAIR), the Engineering Research Center (ERC) of

Excellence Program.
ye-mail address : fgladius,hang@compiler.kaist.ac.kr
zKorea Advanced Institute of Science and Technology, 373-1 Gusung Yusung

Taejon South Korea 305-701
1VRML indicates VRML 2.0 hereafter.

of object-oriented features in VRML. Adding further object-oriented features to

VRML will make it easier to design and create a complex virtual world. Also,

one will be able to understand VRML files more easily.

VRML does not have many language constructs to support multi-user envi-

ronments. One of its design criteria, `multi-user potential', implies that it has

not yet incorporated language constructs designed specifically for multi-user en-

vironments. Currently, a variety of multi-user virtual environment systems based

on VRML are available. However, there exists no general agreement on the basic

structures, such as message transmission protocol for a server and its clients or

contents of a message, on which those systems should be established. It is pri-

marily attributed to deficiency of language constructs for supporting multi-user

environments in VRML.

The main goal of this paper is to introduce a new object-oriented 3D scene

description language supporting the easy implementation of multi-user virtual

environment systems. We call this language OO-VRML (Object-Oriented VRML),

which is a variant of VRML. In Section 2, we explore the general concept of ob-

ject orientation. In Section 3, the object-oriented features of OO-VRML are

explained as we present the way of defining a new node type. The compari-

son of VRML and OO-VRML clarifies the main differences of two languages. In

Section 4, we show the characteristics of OO-VRML which support multi-user

environments. In Section 5, we present how to represent a new node with a

complete example. In Section 6, we show that OO-VRML is an improvement on

VRML. Finally, we summarize this paper and present future directions.

2 OBJECT ORIENTATION

Before presenting the proposed syntax of OO-VRML and its semantics, it would

be helpful to examine the general notion of object orientation. Object orienta-

tion [7, 8] is both a language feature and a design methodology. In both cases,

an object is composed of a set of operations on some encapsulated data of its

own. Regardless of its size and type, all interactions with an object occur only

through simple operations called `event sends'. An event send applied to an ob-

ject invokes the associated operation of the object and causes the object to take

an action (or behavior).

The node of VRML is a language construct corresponding to the object of

object-oriented systems. Yet, every action of a VRML node is accomplished

simply by assigning the argument in an incoming event to the associated field of

the node. In other words, a node is controlled practically by other Script nodes or

event-generating nodes that are connected to the node via routes, which violates

the basic principle of the object-oriented design. Hence, in order to improve

object-oriented features of VRML, it is important that all actions of a node be

defined inside the node and that the description of the actions be invisible from

the outside.

A typical object-oriented language provides such features as subtyping, in-

heritance, and encapsulation. In VRML, subtyping means that if some node n1

has all of the functionality of another node n2, we may use n1 in any context

expecting n2. Inheritance is the ability to use the definitions of simpler nodes in

the definition of a more complex node. Encapsulation means that access to some

portion of a node's data is restricted only to that node.

All these features are incorporated into VRML, either partially or com-

pletely. For example, the first node found in a prototype definition is used to

determine the actual type of nodes from this prototype when used in a VRML

file, which shows the complete subtyping feature of VRML. However, encapsu-

lation of VRML is provided in a very restrictive form because fields of any node

except Script nodes can be either simply read or simply written to, i.e. operations

to be performed on those fields are limited. The first case is found in the use

of IS syntax in the prototype definition. The second case occurs when an event

is generated in a node and the event is delivered to another node via a route.

Copyright Notice
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.

In most cases, general operations, such as arithmetic operations or extracting

one member from a multiple-valued field, can be performed only on the fields of

Script nodes. The design of OO-VRML has concentrated on the encapsulation

feature.

In general, an object-oriented programming language adopts one of two dif-

ferent ways of defining and creating objects. The one is class-based and the other

is delegation-based. In class-based languages, such as C++, the implementation

of an object is specified by its class and an object is created by instancing2 its

class. In delegation-based languages, objects are defined directly from other ob-

jects. DIVE [1, 6] system employs this approach. Since VRML is essentially a 3D

scene-description language, it does not need to choose only one way as a general

programming language does. OO-VRML is designed to take full advantage of

both ways.

3 DEFINING A NEW NODE TYPE

This section covers the method of defining a prototype in OO-VRML, or pro-

totyping, to introduce a new node type which corresponds to a class in object-

oriented systems. Prototyping provides a class-based way of defining and cre-

ating objects. In this section, most of the object-oriented features incorporated

into OO-VRML are explored.

3.1 Main Di�erences Between VRML And OO-VRML

In VRML, when a node receives an event, it merely assigns the value of the event

to its associated field and generates new events if necessary. Thus, in order to

add a general operation to a node, an independent Script node is inevitable for

use. An Interpolator node may be put to use. However, it supports only linear

keyframed animation for a specific field type.

The most apparent difference between VRML and OO-VRML is that OO-

VRML no longer provides Script nodes and routes. Instead, event handlers of a

node enable the node to take general actions. Event handlers are included in the

prototype definition of the node and are executed when events are received. In

most cases, VRML employs routes to hand over an event from one node to other

nodes. In contrast, a node of OO-VRML sends an event directly to other nodes,

not via routes, which conforms to the generally accepted principle in most object-

oriented systems. VRML provides a way that events may be sent directly from

one node to another. However, it must be a Script node with its directOutput field

set to TRUE that sends such events. Therefore, there is no way of sending an event

directly from a node, except the Script node, to other nodes. In OO-VRML, any

node can send events directly to other nodes, not via routes.

For every language element of VRML, such as primitive node types, field

types, or the DEF keyword, there exists a corresponding element in OO-VRML.

Furthermore, one may assume freely that every element of OO-VRML not men-

tioned otherwise in this paper has exactly the same meaning as its corresponding

element of VRML. For example, every field type of OO-VRML has the same

meaning and the same syntax as the corresponding field type of VRML. Fields

are considered private and cannot be changed by other nodes, while exposed-

Fields are public and may be modified by other nodes. The addChildren field of

the Transform node of OO-VRML has the same meaning as that of the Transform

node of VRML.

3.2 Prototypes

Prototyping is a mechanism by which the set of available node types can be ex-

tended from an OO-VRML file. A prototype definition consists of the following.

� the PROTO keyword

� the name of the new node type

� the optional extendible keyword

� the prototype declaration which contains the following:

{ a list of eventIns and eventOuts

2The notion of instancing in VRML is different to that in general object-

oriented systems. In VRML, instancing means using the same instance of a node

multiple times, which is called `sharing' in other systems.

{ a list of exposedFields and fields with default values

� the prototype definition which contains the following:

{ zero or more prototypes

{ zero or more event handlers

{ zero or more nodes

An informal OO-VRML syntax for prototyping is shown below.

PROTO protoTypeName <extendible> [

eventIn eventTypeName name

eventOut eventTypeName name

exposedField fieldTypeName name defaultValue

field fieldTypeName name defaultValue

...] {

zero or more nodes

zero or more prototypes

zero or more event handlers

}

An eventIn of OO-VRML has a different meaning from that of VRML. In VRML,

an eventIn is associated with a field. In OO-VRML, an eventIn has its own event

handler. If an eventIn X is declared in a prototype declaration, there must be an

event handler with the same name in the prototype definition, as follows.

eventIn eventInType X # in the prototype declaration

HANDLER X { # in the prototype definition

...

}

When a node receives an event for X, the event handler X is invoked. If the handler

is not present in the prototype definition, it causes an error during parsing. An

event handler of an OO-VRML node can carry out such works as the Script node

of VRML performs. It describes an action that the node takes when a relevant

event is received. Thus, an operation may be performed on a node only through

an eventIn declared in its prototype, which conforms to the design criteria of

object-oriented systems.

EventOuts have completely different semantics from those of VRML. An

eventOut Y of a node may contain zero or more eventIns of other nodes.3 If

the eventOut is of field type T, all those eventIns are expected to be of type T.

Assigning a value of type T to eventOut Y generates an event and delivers the

event to all the eventIns that are contained in Y. Hence, an event is sent not via

routes but directly to other nodes. The contents of an eventOut of a node, zero

or more eventIns of other nodes, are given when instantiating the prototype. For

example, suppose that an eventOut Z of type T of node A is given the following

list of eventIns.4

Z [B.P C.Q D.R]

When assigning a value V to Z, three events are generated, one for each of the

eventIns in Z. It is depicted in Figure 1.

Every eventOut of the primitive nodes of OO-VRML is activated as it is

assigned a value on the same condition as in VRML. For example, the Touch-

Sensor node of VRML generates events as the pointing device passes through any

geometry nodes that are descendants of the TouchSensor node's parent group.

The TouchSensor node of OO-VRML behaves in the same manner.

Fields are the parameters that distinguish a node from other nodes of the

same type. The semantics of fields is the same as with VRML. An exposed-

Field declares implicitly an eventIn with the same name, hence, also defines an

event handler with the same name in the prototype definition.5 Note that un-

like VRML a corresponding eventOut is not declared. When the eventIn receives

3The default value of an eventOut contains no eventIn.
4The syntax to access fields, eventIns, and eventOuts of a node is the same

as with VRML.
5However, you cannot declare a field and an eventIn with the same name

together in a prototype. This violates the name scoping rule of VRML, hence,

also the name scoping rule of OO-VRML.

eventOut T Z

node A

node B

node C

node D
V

V

V
eventIn T P

eventIn T Q

eventIn T R

Figure 1: Multiple events sent through a common eventOut.

an event with value V, the value of the exposedField is changed to V. The event

handler defined implicitly is assumed to perform this operation.

The optional extendible keyword plays an important role when the prototype

is instantiated. It specifies whether we may attach additional event handlers to

the new node or not. It also specifies whether the event handler defined in the

prototype may be redefined or not. A more detailed explanation on the extendible

keyword is presented in Section 5.

The first node appearing in the prototype definition is used to determine

the type of nodes of this prototype, as with VRML. If there is no node in the

prototype definition, the type of nodes of this prototype does not exist. Usually,

such a prototype contains only event handlers in its prototype definition and

is used to create nodes which can be regarded as the counterpart of the Script

node of VRML. Any prototype found in the prototype definition holds good only

inside the definition part, i.e. it is invisible from the outside of the prototype.

The prototype name must be unique. It cannot rename a built-in node type or

an already defined prototype.

3.3 Event Handlers

The event handler is used to program general operations of nodes. When a node

receives an event through an eventIn, the event handler with the same name as

the eventIn is invoked. Event handlers are built on the following syntax.

HANDLER eventHandlerName {

field MFstring url []

any number of

field fieldTypeName name defaultValue

}

Each event handler has its own programming language code, referenced by the

url field, as with the Script node of VRML. The event handler's function is

described in the url field. The url field may have a piece of inline language code

or specify a URL (Uniform Resource Locator) which refers to a file. The way to

fill the url field is explained in Section 4.

An event handler may have its own local fields that are visible only within

the handler. These local fields may be used to store temporary computational

results, values sent to eventOuts, or other information for a general purpose.

Like fields in the prototype declaration, all the local fields of an event handler

are persistent across event handler invocations. Note that exposedFields are not

permitted in event handlers. The local fields may have their default values. They

are initialized when the prototype is instantiated.

Every prototype in OO-VRML may define an event handler named initialize.

The handler is called after the prototype is instantiated and before events are

received. Likewise, an event handler named shutdown may be defined. The han-

dler is called when a relevant node is deleted. Also an event handler named

eventsProcessed may be defined, which is called after one or more events are pro-

cessed. An associated eventIn for any of the above three event handlers is not

required in the prototype declaration. The handlers initialize and shutdown cor-

respond to the constructor and the destructor in an object-oriented language,

respectively. The counterparts of these event handlers are found in the Script

node of VRML.

multicast

address

client n

client 1

client 2

world server

virtual

user update

initial transfer

Figure 2: Multi-user system based on the multicast mechanism.

4 MULTI-USER ENVIRONMENTS

One of the basic design criteria of OO-VRML is that it should be suitable for the

easy implementation of multi-user systems. The mechanism of event transmis-

sion among nodes in OO-VRML is much simpler and far more restricted than in

VRML. Additionally, OO-VRML considers the contents of messages that should

be distributed among clients participating in a shared virtual world when an

event transmission between nodes occurs in a specific client. For this purpose,

particular attention is paid to the url field of the event handler. In this section,

we present the proposed structure of messages and describe fully the url field of

the event handler.

4.1 Fundamental Connection Structures

To begin with, we consider fundamental connection structures for a virtual world

server and its clients. At a rough approximation, they can be categorized into

structures that are built on direct server-client connection [4, 9], and structures

that are built on multicast mechanism [4, 5]. In the first approach, a client re-

ceives from the server all necessary update information about the world that

arises from other clients. Since many clients communicate directly with the

server, the server takes relatively heavy tasks and each client is given a rela-

tively simple work. The central server can become a bottleneck of the multi-user

system very quickly.

The second approach employs the multicast mechanism. In this approach,

a client sends its messages directly to other clients through a common multicast

group, not via the virtual world server. The server keeps the up-to-date record

of the virtual world state and sends the current record to a new client trying to

participate in the virtual world. This approach has already proven to be suitable

for large scale multi-user virtual world systems, such as DIVE. However, the

multicast mechanism is less reliable because any message sent by one client is not

guaranteed to arrive at other clients within a specific time limit. Furthermore,

the message may be lost during transmission.

In designing OO-VRML, the multicast mechanism is adopted as the basic

model of the connection structure, although the connection structure has no di-

rect relation with any OO-VRML feature. OO-VRML is designed to minimize the

problem incurred by employing the multicast mechanism, such as lost messages

and simultaneous arrival of more than one message for a common eventIn.

4.2 Message Transmission Among Clients

For the purpose of a clear discussion, we use the term `message' to describe

data transmitted from one client to another client or to the virtual world server.

Message transmission is completely different from event transmission which refers

to sending events from one node to other nodes within one client. A message has

a piece of information on transmitting one or more new events generated in an

event handler to other nodes within a specific client. Note that an event handler

packs a message after the completion of its execution and sends it to other clients.

A message originated in one client is delivered to all other clients to inform them

event handler G

node P

event handler H

node Q

client B

T2 : e1 T4 : e2

event handler G

node P

client A

T1 : e1 T3 : e2

event handler H

node Q

T4 :

message

for e2

T2 :

message

for e1

Figure 3: Transmission of two messages from client A to client B.

of a possible change in the shared virtual world. The recipient of the message

invokes one or more event handlers which process the events contained in the

message. These event handlers need not generate new events because messages

for the new events will be delivered soon from the sender of the first message.

One may wonder why a recipient of a message does not generate new events and

process them for itself. However, for the purpose of consistency among clients,

it should be permitted only to some special nodes, such as the TimeSensor node.

Two messages are said to be of the same type if they are packed by one event

handler.

Consider the following situation, which is presented in chronological order.

The messages for events e1 and e2 are of the same type. It is depicted in Figure 3.

In this case, the messages contain only one event.

T1 Event e1 is transmitted from node P to node Q within client A.

T2 A message for event e1 arrives at client B.

T3 Event e2 is transmitted from node P to node Q within client A.

T4 A message for event e2 arrives at client B.

In a normal case, the event handler H of client B processes event e1 at T2 and

event e2 at T4, which results in a consistent state with client A (and probably

with all other clients). However, serious inconsistency may occur among clients

in the following case.

Case 1 The message for event e1 is lost in transit.

It is probable that case 1 may occur because the multicast mechanism is not

completely reliable. Since it is not guaranteed that processing event e2 in client

B puts right an inconsistent state of node Q due to the lost message for event e1,

client B can not confirm whether or not its own record of node Q is consistent

with others even after the message for event e2 has been received. Therefore,

it is a desirable requirement that processing all events in a message should put

right a possibly inconsistent state resulting from previous missed messages of

the same type. Consider another case for demonstrating the usefulness of the

requirement.

Case 2 Both messages for events e1 and e2 arrive at client B at the same time.

Case 2 may be regarded as equivalent to a case where the message for event

e2 arrives at client B before the processing of event e1 is completed. If the

requirement described above is satisfied, we may discard event e1 and process

only event e2, which results in better performance of client B.

The requirement could be met by devising a sophisticated connection proto-

col for clients and the server, independently of the language on which the multi-

user virtual environment system is based. However, if the language presents a

specific feature supporting the requirement, it is much easier to implement such

multi-user systems. Both the specification on the url field of event handlers

of OO-VRML and the proposed structure of messages comply with this design

principle. In the next section, we consider the contents of a message distributed

among clients.

4.3 Contents Of A Message

A message should have all necessary information to process correctly a set of

events generated in an event handler. Thus, a message has the following basic

information for each event.

� event destination

indicates to which eventIn of which node this event is directed.

� event value

� time stamp

Besides the basic information, a message should carry additional information

about fields and exposedFields that are relevant to each event. Consider the

following example of prototyping. The url field of event handler X is written in

pseudo code.

PROTO [

field SFVec3f A

eventIn SFVec3f X] {

HANDLER X {

url "

Let P be the parameter of event handler X

A[i] = A[i] + P[i], for i = 0,1,2

"

}

...

}

In this example, the result of executing event handler X depends on the current

value of field A as well as the value of parameter P.6 Hence, any message contain-

ing an event sent to eventIn X must carry the value which field A of the sender has

before the execution of event handler X. The recipient of the message must set

field A to this value before executing event handler X. The reason for putting this

additional information in the message is to guarantee that processing an event

compensates for all events sent to the same eventIn that have been missed or not

processed. Therefore, an OO-VRML parser should perform compile-time static

analysis of each event handler and the server of a virtual world should make

the outcome of the analysis available to all clients participating in the virtual

world. A simple strategy is that a field is marked as static for an event handler

if the event handler reads the field before writing a value to it. More efficient

algorithms may be obtained by general data-flow analysis of event handlers.

Once this additional information is added to the message, it seems to fol-

low naturally that the requirement described in the previous section is satisfied

completely. In the next section, we present a case in which it is not true.

4.4 url Field Of The Event Handler

As mentioned before, an event handler's url field may specify a URL or have

inline language code. An example of the first type of url is as follows. As with

the url field of the Script node of VRML, the url field may contain multiple URLs.

url "http://foo.com/sample.js"

We show the structure of the actual content of the url field with inline language

code written in JavaScript. The general structure of the url field is shown below.

url "javascript:

function main(parameter,time_stamp) {

...

}

function generate() { # no parameter

...

}

6We call field A static for event handler X.

additional functions invoked during the

execution of main()

"

When an event handler is called, function main() enters into execution first. Its

first argument is the event value handed on to the event handler. The second

is the time stamp. Function generate() is called after the execution of main() is

completed. New events which are sent to other nodes may be generated during

the execution of generate(). One may write in main() some statements that generate

new events but all these events are entirely ignored. In other words, generate()

is the only function where new events may be generated. Therefore, local fields

are sometimes indispensable to store some computational results that are used

as the values of new events.

This strict restriction is imposed principally in order to support the easy and

efficient implementation of multi-user virtual environment systems by allowing

those systems to catch new events easily and to handle them in a dedicated man-

ner. Furthermore, a conditional event generation, such as the following pseudo

code, should be avoided in generate().7

if (condition A) then generate event X;

else generate event Y;

To see why, consider an example in which a conditional event generation is al-

lowed.

T1 node P!(event X1)!node Q!(event Y1)!node R

T2 node P!(event X2)!node Q!(event Z1)!node R

The above situation is assumed to occur in client A. Recall that processing an

event compensates for all missed events sent to the same eventIn. Homogeneous

events X1 and X2 share a common eventIn of node Q. Hence, both are processed in

a single event handler of node Q. Heterogeneous events Y1 and Z1 are generated

in this handler. On receipt of events X1 and X2, new events Y1 and Z1 are

sent to different eventIns of node R, respectively. All the information about

this situation should be delivered in the form of messages to another client B.

However, in case the message for event Y1 is lost in transit, node R of client B

remains inconsistent with node R of client A until a new message for an event of

the same kind as Y1 arrives at client B, which may cause a serious inconsistency

problem. Even if the message for event Z1 arrives at client B, the inconsistency

problem cannot be resolved because events Z1 and Y1 do not share a common

eventIn of node R.

Therefore, for the reliability of the implementation, any conditional event

generation should be avoided. It does not mean that a conditional event gener-

ation in generate() causes an error. Rather, it says that if there is no conditional

event generation, it is guaranteed that the processing of a message puts right

a possibly inconsistent state resulting from some missed messages of the same

type. The creator of a virtual world should keep this point in mind when using

OO-VRML.

Fields and exposedFields of a node are available to all event handlers in it

by using their names. They may be read or written to. The local fields defined

in an event handler are available only to the event handler. Their values are

persistent across event handler calls.

Unlike VRML, an eventOut defined in a node can be only written to. Writ-

ing a value to an eventOut generates zero or more new events, depending on

the number of eventIns contained in the eventOut. In OO-VRML, reading an

eventOut returns neither the last value sent nor a default value, while in VRML

reading an eventOut returns the last value sent. An OO-VRML parser should

warn explicitly that it returns an undefined value on such a case. So, in order

to retrieve the last value written to an eventOut, it should be kept in a specific

field or exposedField. The event handler can assign a value to any eventIn or

exposedField of a node to which it has a pointer. As with eventOuts, however,

they cannot be read.

During the execution of generate(), assigning to an eventOut multiple times

generates the same number of events in sequential order. In most cases, when

packing a message, we only have to pay attention to the last value assigned to

7If events X and Y are sent to a common eventIn, it is not a conditional event

generation.

the eventOut because it is assumed that processing an event compensates for all

events for the same eventIn that have been lost or not processed before. However,

the preceding values cannot be ignored because they may affect some nodes.

5 OTHER CONSIDERATIONS

In this section, we cover other differences between OO-VRML and VRML that

are not explained yet. An example is given to clarify the design principle of

OO-VRML.

5.1 Representing A New Node

Representing a new node can be done easily by filling each field with an initial

value as follows.

nodetype {

fieldName initialValue

exposedFieldName initialValue

eventOutName initialValue

}

The default value of a field is used if an initial value is not specified. All event

handlers in the prototype definition are automatically inherited to prototype

instances.

In some case, it is desirable that a new event handler may be added to a

node or an already defined event handler may be replaced by a new one. In

OO-VRML, we do not need to define and create a new prototype only for this

case. Instead, we may attach a new event handler to a node if its prototype is

extendible. For extendible prototypes, an established event handler, including

initialize(), shutdown(), and eventsProcessed(), may be overridden by a new event

hander with the same name. More than one event handler with the same name

may be attached but only the last handler is valid.

PROTO T extendible [...] {...}

T {

...

eventIn SFBool test

HANDLER test {

}

}

To attach a new handler, the corresponding eventIn with the same name as the

handler should be declared first. The eventIn specifies the type of the event

value. This feature of OO-VRML is partially conformable to the basic design

principle of delegation-based object-oriented languages. Note that new fields or

exposedFields cannot be added to any prototype instance, whether the prototype

is extendible or not. Group nodes are the only extendible basic node types of

OO-VRML.

5.2 Node Name Scoping Rule

The DEF keyword defines a node's name and creates a node of that type. The USE

keyword indicates that a reference to a previously named node should be used. In

VRML, if multiple nodes are given the same name, then the last DEF encountered

during parsing is used for USE definitions. In OO-VRML, the rule does not hold,

namely, a node's name declared by using the DEF keyword becomes invalid outside

the most enclosing block where the name is declared. For instance, the second

USE X in the following example causes an error during parsing because the name

X is no longer valid after the Transform node.

Transform {

children [

DEF X Transform {...}

USE X # OK

] # Name X becomes invalid.

}

USE X # Error

This scoping rule is adopted to support the encapsulation feature of object-

oriented languages.

5.3 Sensor Nodes And Interpolator Nodes

Each event generated in Sensor nodes and Interpolator nodes is usually directed

to other nodes so that it may have useful effects on the virtual world.8 Since OO-

VRML no longer provides routes, the destination of the event should be specified

when representing those nodes. In the following example, the node T sends an

event to nodes X and Y when necessary.

DEF X ...

DEF Y ...

DEF T TouchSensor {

enabled FALSE

hitNormal [X.inEvent01 Y.inEvent02]

}

5.4 An Example

The following prototype is used to define nodes which determine whether a given

color contains a lot of red component. An example of the Script node of VRML

defined for the same purpose is found in [3]. One could see the main differences

of the two languages by examining this example.

PROTO T extendible [

eventIn SFColor colorIn

field SFColor currentColor 0 0 0

eventOut SFBool resultEvent] { # destination

HANDLER colorIn {

field SFBool result

url "javascript:

function main(c,ts) {

this function is called first when

an event colorIn is received.

currentColor = c;

if (currentColor[0] >= 0.5)

result = true;

else

result = false;

}

function generate() {

A new event is generated.

resultEvent = result;

}

"

}

}

DEF X ...

DEF Y ...

DEF myDetector1 T {

resultEvent X.inEventName

}

DEF myDetector2 T {

resultEvent [X.inEventName Y.inEventName]

}

6 DISCUSSION

Our object-oriented strategy for OO-VRML has an improvement on the current

VRML architecture for the following reasons. First, the behavior of a node is

completely described in its prototype definition or additional event handlers at-

tached to the node when representing the node. Hence, one can build or recon-

struct a virtual world in an object-oriented style. Interpreting a virtual world file

is also easier in OO-VRML than in VRML because one has only to concentrate

mainly on each node itself, not the relations between nodes. Second, OO-VRML

presents a simplified and restrictive structure for the url field of the event han-

dler as well as the basic structure of messages distributed among clients. The

structures support partially the multi-user virtual environment systems based

on the multicast mechanism. It facilitates the methodical implementation of re-

liable systems. Finally, compared with the VRML architecture, the OO-VRML

8Another sort of node with this property is the Collision node.

architecture reduces the number of events passed among nodes to achieve general

behavior of a node. It results from the elimination of the Script node and the

route in OO-VRML. Sample cases for both VRML and OO-VRML are shown in

Figure 4 and Figure 5, respectively. In Figure 4, event passing between nodes

occurs twice before the event with value f (~x) reaches node B. In Figure 5, event

passing occurs only once because the computation of f (~x) is accomplished inside

node B. Therefore, the OO-VRML architecture reduces the network burden for a

multi-user system because the number of messages sent by a client is decreased.

node A
Script

node

route route

~x ~x f (~x) f (~x)

node B

Figure 4: Passing events in the VRML architecture.

event handler

node B

node A

f (~x)

~x

Figure 5: Passing an event in the OO-VRML architecture.

OO-VRML has a drawback that it has no language construct to prevent the

conditional event generation. Additionally, the behavior of a node in OO-VRML

may not be as general as in VRML because of the restrictive structure of the url

field of the event handler. Employing a powerful script language could give a

remedy for such problems.

7 CONCLUSIONS AND FUTURE WORK

We have designed an object-oriented 3D scene description language, OO-VRML,

which is a derivative of VRML. The primary design criteria of OO-VRML are

to enhance the object-oriented feature of VRML and to make it suitable for

the easy implementation of multi-user systems. Event handlers of OO-VRML

undertake the role of Script nodes and routes of VRML. The event handler

is the vital ingredient of OO-VRML for its object-orientedness. The structure

of the event handler's url field is designed to support multi-user environments.

In OO-VRML, attaching general behavior to a node can be accomplished in an

object-oriented way. Hence, it is easier than in VRML to build or interpret a

complex virtual world file. Although the basic idea of OO-VRML is very simple,

it is meaningful that VRML has evolved into OO-VRML which provides a new

method for programming general behavior of nodes in an object-oriented style.

Our future work involves developing an OO-VRML-to-VRML translator which

will be used to measure the utility of OO-VRML. The object-oriented facility of

OO-VRML in creating a virtual world will be examined by testing a sufficient

number of examples. The justification of the restriction forced upon the event

handler will be performed along with the test process. An interesting research

topic is about developing a methodology to handle general conditional event

generations in the event handler. There may be many ways, from simple to com-

plex, but the way which minimizes the network burden and resolves completely

the problem of inconsistency among clients should be adopted. The proposed

message transmission protocol should be further refined to release a formal spec-

ification on the protocol. The verification of the propriety of the protocol for

multi-user environments will be carried out by implementing a simple system and

testing the protocol on that system.

We believe that VRML will inevitably develop into a 3D scene description

language supporting the multi-user environments and possibly object orienta-

tion. The next version of VRML may be far more advanced for this aspect than

the current version. We hope that OO-VRML will be contributive to improving

VRML in these directions.

References

[1] DIVE 3.0.13 Files Speci�cation.

\http://www.sics.se/dive/manual/dive file format.html".

[2] Andrea L. Ames, David R. Nadeau, and John L. Moreland. The VRML Source-

book. John wiley & sons, Inc., 1996.

[3] Gavin Bell, Rikk Carey, and Chris Marrin. The Virtual Reality Modeling Lan-

guage Speci�cation Version 2.0.

\http://vag.vrml.org/VRML2.0/FINAL/vrml2.ps.gz".

[4] Wolfgang Broll and David England. Bringing Worlds Together: Adding

Multi-User Support To VRML. In Symposium on the Virtual Reality Modeling

Language, pages 87{94, 1995.

[5] Donald P. Brutzman, Michael P. Macedonia, and Michael J. Zyda. Internet-

work Infrastructure Requirements For Virtual Environments. In Symposium

on the Virtual Reality Modeling Language, pages 95{104, 1995.

[6] Christer Carlsson and Olof Hagsand. DIVE - a Multi-User Virtual Reality

System. In Virtual Reality Annual International Symposium, pages 394{400. IEEE,

1993.

[7] Kathleen Fisher and John C. Mitchell. What Is An Object-Oriented Programming

Language ? \ftp://theory.stanford.edu/pub/kfisher/whatis-oop.ps".

[8] Kouichi Matsuda, Yasuaki Honda, and Rodger Lea. Sony's Approach

To Behavior And Scripting Aspects Of VRML: An Object-Oriented Perspective.

\http://www.csl.sony.co.jp/project/VS/proposal/behas

cri.html".

[9] Hwang Myung-gyu and Wohn Kwang-yeon. Multiparticipant 3D Browsing

System On The WWW. In Korea Human Computer Interaction Symposium, pages

75{88, 1995.

